The Multiplicity Conjecture for Barycentric Subdivisions

نویسندگان

  • MARTINA KUBITZKE
  • VOLKMAR WELKER
چکیده

For a simplicial complex ∆ we study the effect of barycentric subdivision on ring theoretic invariants of its StanleyReisner ring. In particular, for Stanley-Reisner rings of barycentric subdivisions we verify a conjecture by Huneke and Herzog & Srinivasan, that relates the multiplicity of a standard graded k-algebra to the product of the maximal shifts in its minimal free resolution up to the height. On the way to proving the conjecture we develop new and list well known results on behavior of dimension, Hilbert series, multiplicity, local cohomology, depth and regularity when passing from the Stanley-Reisner ring of ∆ to the one of its barycentric subdivision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Face Vectors of Barycentric Subdivisions of Manifolds

We study face vectors of barycentric subdivisions of simplicial homology manifolds. Recently, Kubitzke and Nevo proved that the g-vector of the barycentric subdivision of a Cohen–Macaulay simplicial complex is an M -vector, which in particular proves the g-conjecture for barycentric subdivisions of simplicial homology spheres. In this paper, we prove an analogue of this result for Buchsbaum sim...

متن کامل

The Lefschetz Property for Barycentric Subdivisions of Shellable Complexes

We show that an ’almost strong Lefschetz’ property holds for the barycentric subdivision of a shellable complex. From this we conclude that for the barycentric subdivision of a CohenMacaulay complex, the h-vector is unimodal, peaks in its middle degree (one of them if the dimension of the complex is even), and that its g-vector is an M -sequence. In particular, the (combinatorial) g-conjecture ...

متن کامل

Preprints (4 Total)

We prove that the (d − 2)-nd barycentric subdivision of every convex d-ball is shellable. This yields a new characterization of the PL property in terms of shellability: A sphere or a ball is PL if and only if it becomes shellable after sufficiently many barycentric subdivisions. This improves results by Whitehead, Zeeman and Glaser. Moreover, we show the Zeeman conjecture is equivalent to the ...

متن کامل

Weighted L–cohomology of Coxeter groups based on barycentric subdivisons

Associated to any finite flag complex L there is a right-angled Coxeter group WL and a contractible cubical complex ΣL (the Davis complex) on which WL acts properly and cocompactly, and such that the link of each vertex is L. It follows that if L is a generalized homology sphere, then ΣL is a contractible homology manifold. We prove a generalized version of the Singer Conjecture (on the vanishi...

متن کامل

`-homology of right-angled Coxeter groups based on barycentric subdivisions

Associated to any finite flag complex L there is a right-angled Coxeter group WL and a contractible cubical complex ΣL on which WL acts properly and cocompactly, and such that the link of each vertex is L. It follows that if L is a triangulation of Sn−1, then ΣL is a contractible n-manifold. We establish vanishing (in a certain range) of the reduced `2-homology of ΣL in the case where L is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007